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Studies of the universality hypothesis for the classification of the critical behavior of statistical
systems, based on the construction of gauge models as equivalent to random-surface theories, have

been until now strongly restricted to the n =

0 (zero-spin components) limit. This difficulty is

overcome here, thus rendering possible a precise description of the correspondence between the
generating functions of ensembles of random surfaces and the (more simple) partition functions of
the related Hamiltonian gauge models, for a wide spectrum of physically relevant processes.

PACS number(s): 05.50.+q, 05.70.Jk

One of the most basic clues for the classification of
the critical behavior of statistical systems is provided by
the universality hypothesis, which states that the val-
ues of the critical exponents characterizing a system are
uniquely determined by a few fundamental attributes,
such as the spatial dimensionality of the system, its sym-
metry, etc. In a very recent paper, Banavar, Maritan,
and Stella have been able to prove that topology is also
one of these basic attributes [1].

A very important role in the study of those systems
(appearing in such diverse areas as material sciences,
statistical physics, biology, and high-energy physics) is
played by random surfaces in their different versions, the
main ones being triangulated random surfaces and ran-
dom surfaces on the lattice. We shall here deal with the
latter ones only and, the lattice will be a cubic one. The
surfaces are built from elementary plaquettes and, when
they are closed and self-avoiding, each bond (edge) be-
longs to exactly two plaquettes. The area of the surface
is an integer number, in terms of the elementary pla-
quette area, and the volume enclosed by the surface
is also an integer number of elementary cube volumes.
Without loss of generality, we shall take the lattice con-
stant equal to 1.

Triangulated random surfaces with the topology of a
sphere were rigorously proven to be trivial (i.e., nonin-
teracting) by Durhuus, Frohlich, and Jénsson some years
ago [2]. An additional problem was the appearance of
spikes (infinities), for any kind of triangulation [3]. This
latter difficulty was the first to be solved, by considering
self-avoiding surfaces, by modifying the surface action
[4], and by dealing with multicoverings [5]. Concerning
triviality, it has been interpreted by saying that some
entropic mechanism favors branched polymerlike config-
urations, so that one always falls into this universality
class when the topology of the surface is that of a sphere
(zero number of handles) or even finitely more compli-
cated (i.e., with a bounded number of handles), although
this last result is still lacking a rigorous proof. It has been
demonstrated in [1] that, on the contrary, one falls into
a different universality class when one considers random
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surfaces with an unbounded number of handles.

The important results in [1] rely very heavily upon
previous work of Maritan and Stella (6], in which it was
shown how the generating function corresponding to the
grand canonical ensemble of lattice random surfaces can
be derived from a gauge model defined by a reduced
Hamiltonian, in the limit when the number n of com-
ponents of the vectors attached to the bonds goes to
zero [see Eq. (4) below]. Such a procedure simplifies
the calculations enormously; even more, it actually gives
sense to the sum over surfaces, allowing one to study the
random-surface problem by analyzing the corresponding
gauge model. It turns out, however, that this approach
has been possible only in the limit n — 0 and, more-
over, only after making a mathematically arguable, ad
hoc step. Such longstanding problem will be resolved
here in a quite natural way, which will render possible
a precise description of the correspondence between the
generating functions of grand canonical ensembles of ran-
dom surfaces and the partition functions of the related
Hamiltonian gauge models.

This connection between random surfaces and gauge
models is reminiscent of the very important one which
exists between the s-state Potts model and the random
resistor networks in the limit s — 0. Also, in order to
make the connection precise, it is necessary to scale the
coupling in a very particular manner. The interest of es-
tablishing rigorous and precise links between gauge mod-
els and random surfaces is in no way less. It can also
be viewed as a way of generalizing the de Gennes theo-
rem (7], which connects self-avoiding random walks and
n-component spin models in the limit n — 0 and has
played such a fundamental role in the development of
field-theoretical descriptions of polymers.

Being more concrete, the generating function corre-
sponding to random surfaces of a given topology can be
written as

G(K)=)_ K, (1)
s
where the prime means that the sum is extended over
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the set of surfaces of vesicles on the lattice with the con-
straint that a given plaquette belongs to the reference
surface, and |S| is the surface area. Notice that, in order
to avoid complications which are irrelevant for our argu-
ment, we limit ourselves to the zero-pressure case of [1].
Denoting by C, P, and b the elementary cubes, plaque-
ttes, and bonds of the lattice, and by C, P, and 0b
their corresponding boundaries, respectively, let us now
consider the gauge model defined by the reduced Hamil-
tonian [1,6]
n

H=KZGPZHS§‘+uZ HO’p, (2)
P

a=1bedP C PedC

where the s = (s§) are n-component vectors of mod-
ulus /n attached to the bonds and the op = +1 are
Ising variables attached to the plaquettes of the lattice.
This Hamiltonian is invariant under the following gauge
transformation:

s§g — ep sy, op — (H eb) op, €, = =%1. (3)
bedP

Expanding the partition function Z(K) associated
with the Hamiltonian gauge model above (for v — o0),
and calculating the traces involved, one can check the fol-
lowing relation between Z(K) and the generating func-
tion G(K) of Eq. (1):

. K 0 2

71}3}) [nN K an(K)] = G(K) + 3K*, (4)
N being the total number of sites of the lattice. By
analyzing the critical exponents corresponding to the
gauge model, and by using this equivalence, it has been
demonstrated in (1] that the universality class associated
with lattice random surfaces of unbounded genus is not
.the same as the one corresponding to spherical surfaces.
However, as pointed out by the authors themselves, their
analysis could be carried out only in the n — 0 limit, and
not first treating the arbitrary n case and then letting n
tend to O.

In other words, using the formulation developed in [6],
the preceding equivalence (4) between the Hamiltonian
model and the one of closed, self-avoiding random sur-
faces with an unrestricted number of handles is only ob-
tained in the (hardly intuitive) limit n — 0. The basic
equations leading to this limit are

n
S (s5)? =n, sgsf =6°0(sp)?,
a=1

() =n(s5)*2, k23,

©)

1
Trony (58)° = 5= S (s5)° = 1,
Sb

71113}3 ’I‘r(8b}(sl?)2k = Oko + Ok1-
The origin of these various conditions is the following.

As a whole, their physical meaning is similar to that
of the corresponding ones which —in the case of the
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de Gennes theorem [7)]— give rise to the appearance of
the n-component spin vector in the self-avoiding random-
walk models. Namely, s is an n-component vector at-
tached to the bond b of the hypercubic lattice, which can
take 2n orientations (i.e., plus and minus each of the ba-
sis axes). However, being more specific, these equations
(which were introduced in [6]) have diverse nature.

The first, third, and fourth equations are quite natural:
they just amount to a convenient normalization (to /n)
of the spin vector (aside from taking into account its
2n possible orientations). But the second equation is a
rather strong restriction imposed on the possible form of
the n vectors sp. In particular, a vector such as s, =

(1,1,...,1) is not allowed in this formulation, and only
those of the kind

sy = (0,0,...,£v/7,...,0) (6)
remain. Notice that there are 2n of such vectors,
St,+a, @ = 1,2,...,n, and that their components are
given by

S 1o = EVNEP. (7

This notation is more precise than the traditional one
[employed in (5)], but we shall mostly use this last one
(unless strictly necessary) in order not to confuse the
reader who is already familiar with Refs. [1] and [6].

The last of Egs. (5) deserves a special comment. While
the fact that limy, 0 Try,,) (s;,")2 = 1 is an immediate con-
sequence of the first and third, the rest of the statement,
i.e., the fact that

Tltiir})’]:‘r{sb}(sg)zk k=0 =1, (8)

is by no means a direct consequence of the first four equa-
tions (5). Actually, what one gets from them is

Tr(e,}(s5)% = n*71, (9)

which is clearly divergent for k¥ < 1. This difficulty can-
not be resolved, in principle, whatever the meaning at-
tributed to the delta function 6o in the last of Egs. (5),
which must in fact be considered as a convenient guess
leading to the desired results.

Since we approach the value n = 0 from integer val-
ues of n (the number of components of the vectors at-
tached to the bonds of the lattice), it seems clear that
in any mathematically well-founded theory yielding the
limit n — 0, one will necessarily need to analytically
continue the variable n and, moreover, the result of the
limit will be given in terms of Dirac § functions. This is
exactly what happens, as we are going to see. We look
for a theory which should make perfect sense for finite
values of n and which must reduce to the “guessed” limit
[last equation of (5)] when n — 0 (with the Kronecker §
functions replaced by Dirac ones). There is a natural way
to solve this problem, by choosing a convenient represen-
tation of the Dirac § distribution which will do the job.
What is not immediate at all (to our knowledge nobody
has succeded in this yet) is managing to preserve the full
theory when n is maintained different from 0 (whatever
small it be). This will be here resolved by changing the
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dependence of the components of the vectors s on n,
and also by letting the number of components of these
vectors be a convenient function of n (not trivially n).
Let us be precise. The main idea involved in the work
is to find a couple of smooth functions f and g such that

5§ =(0,0,...,££(n),...,0)y(m (10)

satisfies the last of Egs. (5). Of course, (10) is a for-
mal expression [to be directly compared with (6)] which
conveys the intuition behind the (actually rigorous) pro-
cedure. That means we shall work with spin vectors of
the kind (6) (i.e., with only one nonzero component), de-
fined on a space of vectors of g(n) components. This
will be obtained by making the Cartesian product of R
(the one-dimensional real line) a number g(n) of times—
which has an absolutely precise mathematical meaning
[8]. Intuitively, and for the sake of comparison, we can
think of this vector as having [g(n) + €] components (] ]
means here integer part, and € is arbitrarily small), only
one of which is nonzero. This is how expression (10) has
to be viewed (formally), and constitutes the convenient
implementation of the concept of “limit n — 0” of ex-
pression (6), which was freely introduced in [6,1] without
any mathematical basis. The virtue of our correct math-
ematical definitions is that they will allow us to take this
limit n — O in a rigorous way.

Summing up, the correct expression —the one which
substitutes (7)— is [8]

Shio =%f(n)6(a—p), «,B€0,g(n)]. (11)

Introducing a convenient representation for the § func-

tions, after several calculations we obtain the result [9]

f(n) =exp (—%) , gn)=n [1 + exp (%)] - .

(12)

In this expression we can already see the reason why the
model of Refs. [1,6] was not well suited to extend the
n = 0 results to n # 0. In fact, the behavior of the func-
tions which give the nonzero component and the number
of dimensions of the spin-vector space turns out to be
exponential (in 1/n), rather than linear or powerlike (as
was implicitly assumed in that model). The physical rea-
son for this behavior is not clear (but it is not surprising
either [10]). Actually, when computing the different pow-
ers (s2)?* this form of the functions is valid for & > 1,
and must be supplemented with the following additional
expressions for values of k¥ between 0 and 1:

£(n) ~ exp (-%) , g(n)=n, 0<k< %
(13)
f(n) ~exp <%) , g(n) ~nexp (%) , % <k<1l.

Compared with the previous theory [1,6], in the new
model the value of the components of s, and also their
number, decay much more quickly as n — 0 (exponen-
tially versus powerlike behavior). This is one of the clues
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in the derivation of our finite-n model. There is also
an additional difference which corresponds to the range
1/2 < k < 1. In this case, both the number and the
value of the nonzero component of the bond vectors tend
to infinity, as n — 0. However, here also the trace per
component of the 2k power of the vector falls exponen-
tially to zero (and with exactly the same speed), so that
the last of Egs. (5) is satisfied. Notice that the trace per
component, which in [1,6] was given as

1 n n
Trga}(5)% = o= > D (s0)™ (14)
a=1 =1

[this is the one which appeared in Egs. (5)], is general-
ized here [in natural accordance with the preceding ex-
pressions (10)] by means of the formula

1

a\2k __
Tr{sa}(sb) = 2g(n)

g(n)
/0 das(a - ) f(n)*.  (15)

Equations (11)—(13) provide both the analytical contin-
uation of the integer powers of the bond vectors s and
also the continuation of the important n = 0 results to
finite values of n. It is interesting to observe that one
can even get the Kronecker 6§ functions as they stand in
the last of Egs. (5).

Our procedure is mathematically rigorous and can be
extended easily in order to include more elaborate trans-
formations, of the kind

711% Tr{s,}(58)%% = 6ko + Ok1 + Ska, (16)

and so on. The functions f and g above here have the
following form:

f(n) ~exp (—%) , g(n) ~nexp (—%) ,

1
a<k<a+§,
f(n) ~ex 1 (n) @ nex b
= exp n)’ g = p n)’

b—%<k<b, b=1,2,

a=0,1,

(17)

fm = exp (-1).
gn)=mn [1 + exp (%) + exp (%)]_1 , k>2.

The preceding technique makes possible the analysis
of the correspondence when dealing with more involved
Hamiltonian gauge models in a mathematically rigorous
way. Examples of such models (with their respective local
gauge invariances) are the following:
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KZZZ"P IT s +u3-3" 11 o2,

bedP C B PedC

Sp — €pSp, Op — (H Eb) op. (18)

beoP

this corresponds essentially to several copies of the orig-
inal model [1], but here one has the possibility of also
playing with the trace over the spin vectors op associ-
ated with the plaquettes, and

~K 3ot Tl +u X ] ot

bedP a PedC

sE — € s, op — (H eg) %, (19)

bedP

where a coupling between the bond and the plaquette
vectors has been introduced. Generalization of these
models to higher dimensions is also possible.

These models (and variations of them) can be em-
ployed to describe nonclosed and only-partly self-

avoiding surfaces. This is done by using the general-
ization of the trace, as explained above [see (16)]. For
instance, with

Tltirr%) Tris,}(5§)%* = 6ko + Sk1 + k2,

(20)
}Ii_r_{%) Tr(op}(08)%* = bko + bk(1/2) + k1,
the model (19) is capable of describing processes of bub-
ble formation and bubble fussion. Such processes are very
relevant for the description of real physical phenomena,
and the scheme developed here, combined with the tech-

niques of [1,6], allows for its study on the lattice, in terms
of the corresponding Hamiltonian gauge models.

It is a pleasure to thank the members of the Physics
Department of Pennsylvania State University, in par-
ticular Professor Al Actor, Professor Jayanth Banavar,
Professor Howard Grotch, Professor Murat Giinaydin,
and Professor Peter Shaw, for the ameliorative climate
which made this investigation possible. This work has
been partially supported by Direccién General de In-
vestigacién Cientifica y Técnica (Madrid, Spain) and by
CIRIT (Generalitat de Catalunya).

* Present address: Department ECM, Faculty of Physics,
Barcelona University, Diagonal 647, 08028 Barcelona,
Spain.

[1] J.B. Banavar, A. Maritan, and A.L. Stella, Science 252,
825 (1991).

(2] B. Durhuus, J. Fréhlich, and T. Jénsson, Nucl. Phys. B
240, 453 (1984).

(3] J. Ambjorn, B. Durhuus, and J. Fréhlich, Nucl. Phys. B
257, 433 (1985).

[4] B. Baumann and B. Berg, Phys. Lett. 164B, 131 (1985).

5] E. Elizalde, Phys. Lett. 166B, 314 (1986).

[6] A. Maritan and A.L. Stella, Nucl. Phys. B 280 [FS18],
561 (1987); Phys. Rev. Lett. 53, 123 (1984).

[7] P.G. de Gennes, Phys. Lett. A 38, 339 (1972); Scaling
Concepts in Polymer Physics (Cornell University Press,
New York, 1979).

[8] May this be the place to recall such basic concepts as the

Cartesian products: InA = {f : N —» A} = {(an)nen}
and IIrA = {f : R — A} (these are the sets of all suc-
cessions in the arbitrary set A, and the set of all A-valued
functions of a real variable, respectively). In particular,
we have Iljo g B = {f : [0,9(n)] — R}, [0, 9(n)] being
a closed interval of real numbers. This last set, enlarged
in order to also include distributions, is the one in which
we are working.

Details of the explicit derivation of expressions (12) and

(13) will be given elsewhere.

[10] From a more technical point of view, the emergence of the
exponential behavior can be traced back to the absolute
necessity for a § function distribution, which must play
the decisive role of picking up precisely one component
(the one which will be different from zero) out of each
vector of the Cartesian product introduced above.

=



